Ricci flows with unbounded curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci flows with unbounded curvature

We show that any noncompact Riemann surface admits a complete Ricci flow g(t), t ∈ [0,∞), which has unbounded curvature for all t ∈ [0,∞).

متن کامل

ricci flows with bursts of unbounded curvature

Given a completely arbitrary surface, whether or not it has bounded curvature, or even whether or not it is complete, there exists an instantaneously complete Ricci flow evolution of that surface that exists for a specific amount of time [GT11]. In the case that the underlying Riemann surface supports a hyperbolic metric, this Ricci flow always exists for all time and converges (after scaling b...

متن کامل

Topological Entropy for Geodesic Flows under a Ricci Curvature Condition

It is known that the topological entropy for the geodesic flow on a Riemannian manifoldM is bounded if the absolute value of sectional curvature |KM | is bounded. We replace this condition by the condition of Ricci curvature and injectivity radius.

متن کامل

Positive Ricci Curvature

We discuss the Sasakian geometry of odd dimensional homotopy spheres. In particular, we give a completely new proof of the existence of metrics of positive Ricci curvature on exotic spheres that can be realized as the boundary of a parallelizable manifold. Furthermore, it is shown that on such homotopy spheres Σ the moduli space of Sasakian structures has infinitely many positive components det...

متن کامل

Aspects of Ricci Curvature

We describe some new ideas and techniques introducedto study spaces with a given lower Ricci curvature bound, and discuss a number of recent results about such spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2012

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-012-1014-z